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A Case-based Reasoning Approach to Fuzzy Soil Mapping

Xun Shi,* A-Xing Zhu, James E. Burt, Feng Qi, and Duane Simonson

ABSTRACT has always been a challenge in soil mapping (Hole and
Campbell, 1985; Hudson, 1992; McKenzie et al., 2000).Some problems in traditional soil mapping—high cost, high subjec-
To date defining the soil–environment relationship fortivity, poor documentation, and low accuracy and precision—have

motivated the development of a knowledge-based fuzzy soil mapping soil mapping purpose is still largely a mental process
system, named SoLIM (Soil Land Inference Model). The rule-based (Hudson, 1992; McKenzie et al., 2000). A well-trained
method of the current SoLIM has its limitations. It requires explicit and experienced soil scientist is capable of properly
knowledge of the details of soil–environment relationships and it grasping the soil–environment relationships in a certain
assumes that the environmental variables are independent from each area and using these relationships to infer the spatial
other. This paper presents a case-based reasoning (CBR) approach distribution of soils over the area.
as an alternative to the rule-based method. Case-based reasoning uses

Associated with this mental process is the manualknowledge in the form of specific cases to solve a new problem, and
process in creating soil maps: with the built soil–landscapethe solution is based on the similarities between the new problem
model for a mapping area in mind, a soil scientist manu-and the available cases. With the CBR method, soil scientists express
ally delineates soil polygons on orthophotos under ste-their knowledge by providing locations (cases) indicating the associa-

tion between a soil and a landscape or environmental configuration. reoscopes. Several problems are associated with this
In this way, the soil scientists avoid the difficulties associated with manual process. The first is the high cost (on money,
depicting the details of a soil–environment relationship and assuming labor, and time). Zhu et al. (2001) indicated that with
the independence of environmental variables. The CBR inference the current rate of soil survey updating, updating all of
engine computes the similarity between the environmental configura- the soil surveys in the USA requires 220 yr. The second
tion at a given location and that associated with each case representing problem is the high subjectivity. Researchers have no-
a soil type, and then uses these similarity values to approximate the

ticed that different soil scientists may map the samesimilarity of the local soil at the given location to the given soil type.
area in significantly different ways (Bie and Beckett,A case study in southwestern Wisconsin demonstrates that CBR can
1973; Burrough et al., 1997; McBratney and Odeh, 1997;be an easy and effective way for soil scientists to express their knowl-
MacMillan et al., 2000), and this is at least partially dueedge. For the study area, the result from the CBR inference engine

is more accurate than that from the traditional soil mapping process. to the inconsistency in the manual mapping process.
Case-based reasoning can be a good solution for a knowledge-based Another problem is that the knowledge is hard to pre-
fuzzy soil mapping system. serve in this field and training a qualified soil scientist

is expensive. This is because the manual mapping is
largely a personal operation that lacks a scheme to guar-

Soil mapping is basically an inference process based antee good documentation of the knowledge. Still an-
on Jenny’s model (Jenny, 1941, 1980). In routine soil other problem is with the polygon-based model. This

survey and mapping, this model can be represented as model assumes that the soils are the same everywhere
within a polygon and are to be of the type assigned toS � f(E) [1]
this polygon, and they change abruptly at the polygon

where S denotes soil, E denotes environmental vari- boundary. Apparently, in most situations this assump-
ables, and f denotes the soil–environment relationship tion is not valid, as soils often change continuously over
(soil–landscape model). According to this model, if the both geographical and property spaces (e.g., Burrough
environmental conditions at a given location and the et al., 1997; McBratney and Odeh, 1997; Zhu, 1997a).
soil–environment relationship are known, then it is pos- The manual mapping does not allow this continuous
sible to infer the conditions of soil at that given location. variability of soils to be precisely represented, even if
With today’s spatial information technologies, including the soil scientists do know the continuous nature of
geographic information systems (GIS), remote sensing, soil variation.
and the Global Positioning System (GPS), it is possible These problems have motivated the development of
to characterize the environmental conditions in details. knowledge-based systems and the application of fuzzy
Defining the soil–environment relationship, however, logic in this field. Knowledge-based systems aim at mak-

ing a good utilization of domain experts’ knowledge,
X. Shi, Dep. of Geography, Dartmouth College, 6017 Fairchild, Han- meanwhile trying to avoid the problems associated with
over, NH 03755; A-X. Zhu, State Key Lab of Resources and Environ- a manual process, such as inconsistency, tediousness,
mental Information Systems, Inst. of Geographical Sciences and Natu-

and loss of knowledge due to personnel change. Re-ral Resources Res., Chinese Academy of Sciences, Building 917,
searchers have used knowledge-based systems to clas-Datun Road, An Wai, Beijing 100101, China; A.-X. Zhu, J.E. Burt,

and F. Qi, Dep. of Geography, University of Wisconsin-Madison, 550 sify soil samples (Galbraith and Bryant, 1998; Galbraith
North Park Street, Madison, WI 53706; D. Simonson, NRCS-USDA, et al., 1998; Holt and Benwell, 1999), predict soil proper-
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(Skidmore et al., 1991). Most of these authors recog- The first assumption is that cases are capable of repre-
senting domain experts’ knowledge. Hudson (1992)nized the necessity of employing certain techniques to

represent soil scientists’ knowledge of the continuity in finds that a large part of soil scientists’ knowledge can
be subsumed to tacit knowledge, which is learned fromthe soil distribution. Some of them (Galbraith et al.,

1998; Holt and Benwell, 1999) explicitly pointed out practical work, especially from field experiences. The
tacit knowledge of soil scientists is often the most impor-the usefulness of fuzzy logic. On the other hand, the

applicability and advantages of fuzzy logic in soil survey tant knowledge in soil mapping, yet is the most difficult
knowledge to learn by a new soil scientist and by theand mapping have been systematically studied and well

justified (Burrough, 1989; Burrough et al., 1992; Bur- computer, because it is usually hard to articulate and
generalize, due to the fact that the soil-forming processrough et al., 1997; Mays et al., 1997; McBratney and De

Gruijter, 1992; McBratney and Odeh, 1997; De Bruin can be highly complicated and has not been fully under-
stood. As a result, a large part of the knowledge of theand Stein, 1998; Zhu and Band, 1994; Zhu et al., 1996).

Among the pioneer experiments, the SoLIM (Zhu soil–environment relationship is empirical and exists in
the form of cases. It might be difficult to generalizeand Band, 1994; Zhu et al., 1996, 1997 2001; Zhu, 1997a,

1997b, 1999) may be the first knowledge-based fuzzy these cases to form explicit and general rules. However,
according to the studies in the knowledge-based systemmapping system that can be used in routine soil mapping

practice. There are, however, two interrelated limita- field (e.g., Schank, 1982; Kolodner, 1993) CBR can be
very effective in capturing and representing knowledgetions with the current SoLIM. First, it requires explicit

knowledge from the soil scientist—the soil scientist existed in the form of specific cases.
The second assumption of CBR is that a new problemneeds to create fuzzy rules to explicitly depict in detail

how a soil varies in accordance with an environmental can be solved by referring to similar cases. The concept
of landscape unit in traditional soil survey and mappingvariable. Second, it needs the variable independence

assumption—when creating fuzzy rules for a specified provides a basis for using the similarity-based method
to conduct soil inference. Hudson (1992) listed severalvariable, the soil scientist has to assume that all the

environmental variables are independent from each basic characteristics of landscape unit, of which two are
most relevant to applying CBR to this field: “Generally,other, because he/she can work only on one variable at

a time. In practice, a soil scientist may often be unable the more similar two units are, the more similar their
associated soils tend to be; conversely, dissimilar unitsto give details of the relationship between a soil and an

individual environmental variable. This may be because tend to have dissimilar soils”; and “Same or similar units
can occur again and again in space.” These two princi-the soil scientist has not formulated the explicit rules

for the soil and the environmental variable in the map- ples provide the basis for inferring soils by referring to
soils (cases) with similar environmental conditions.ping area, or because the soil scientist knows there are

significant interactions among environmental variables, In this research, a complete methodology of using
CBR to conduct knowledge-based fuzzy soil mappingbut has no way to depict this complexity when working

on a single variable. Although the authors of SoLIM is developed. The methodology contains two major
parts: the case-based knowledge acquisition process andunderstand the importance of the interactions among

environmental variables (Zhu and Band, 1994; Zhu et the case-based soil inference process. The main objec-
tive of this research is to study effectiveness of this CBRal., 1996), they consider it not feasible to have the soil

scientist simultaneously handle multiple environmental method in capturing knowledge on soil–environmental
relationships and in mapping spatial distribution of soilsvariables using the rule-based method of the current

SoLIM (Zhu et al., 1996). under the SoLIM framework.
This paper presents the use of a CBR method as an

alternative to the rule-based method used by the current
MATERIALS AND METHODSSoLIM. Case-based reasoning refers to a concept and

the corresponding technology in the knowledge-based Study Site
system discipline. It uses the knowledge represented in The study area of this research is the Pleasant Valley, aspecific cases to solve a new problem (Aamodt and watershed in southwestern Wisconsin (Fig. 1 and 2). The area
Plaza, 1994; Kolodner, 1993; Leake, 1996; Watson, of this study area is about 5 km2. It is located in the eastern
1997). A case in CBR contains two basic parts: the portion of the Driftless Area, which was not directly overrid-
description of the problem and the solution of the prob- den by continental ice sheets during the Quaternary. The
lem (Kolodner, 1993). The description part is for evalu- major bedrock in the Pleasant Valley is Jordan Sandstone

capped by Prairie du Chein Dolostone. The topography isating the similarity between the case and a new problem.
primarily narrow, alluvial valleys, steep slopes, and broadIf the case and the new problem are similar enough,
ridges (Irvin et al., 1997). Most ridges and valleys have beenthen the solution part of the case is used to solve the
under cultivation since the latter part of the 19th century.new problem. The possibility of using CBR to solve
Side-slopes are generally forested, though some have beenspatial problems and the advantages of CBR-GIS hybrid cleared for pasturing. The soils in this area have formed from

systems in certain application domains have been dis- multiple layers of aeolian loess of recent origin (Pleistocene
cussed by Yeh and Shi (1999), Shi and Yeh (1999), and era) deposited over ancient bedrock residuum. The soils can
Holt and Benwell (1999). be considered relatively young, because most soil forming

The applicability of CBR in soil mapping can be justi- processes of surface layers have taken place in the last ten to
twelve thousand years. Major soil forming processes includefied through examining the two assumptions of CBR.
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Fig. 1. Location of the study area.

Fig. 2. Topography of the Pleasant Valley study area, Wisconsin.
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eluviation, erosion, and mass-wasting (the downslope move- this kind of association in that area. Technically, in a case-
based inference each tacit point is used individually and therement of rock, regolith, and soil, under the influence of gravity,

see Gore, 1998). Ridges typically have a relatively thin mantle is no statistical significance to achieve. In practice, how many
tacit points are needed for an area will be determined by theof loess with substantial residuum; the soils on the side slopes

tend to be relatively thin; and valleys have thick alluvial and soil scientist based on his/her understanding of the soil–
environment relationships in that area.colluvial deposits (Knox et al., 1990; Slater and McSweeney,

1992; Clayton and Attig, 1997).

Case-Based Reasoning Approach to Soil Inference
The Soil Scientist and Soil Classification Unit The goal of soil inference under fuzzy logic is to derive, for

every location in the mapping area, the fuzzy membershipA senior soil scientist from the local office of National
values of all the soils found in the area. With the CBR method,Resources Conservation Service (NRCS) was asked to provide
these fuzzy membership values will be computed based onknowledge for this case study. This soil scientist has extensive
the similarity between the environmental configuration of theexperience of soil survey and mapping in Wisconsin.
given location and that of each tacit point. The technical detailsIn this research, soil series is used as the taxonomic unit
of computing the fuzzy membership value for a certain soil atfor differentiating soils. It is believed that other units or differ-
a specific location can be represented with a generic equation:entiating criteria (e.g., argillic horizon color) can also be used

in this CBR methodology without much difficulty. The soil
series is chosen, because it is the classification unit used in sij

k � T k
ij

n

t�1

{P t
ij

m

v�1

[E v,t
ij (ev

ij,ev,t)]} [2]
routine soil survey and mapping projects at county level.
Choosing soil series has several advantages: first, the soil scien-
tist working for this research (as well as many other soil survey- where sij

k is the fuzzy membership value at location (i, j) for
ors working on routine soil survey and mapping projects) is soil k; m is the number of environmental variables taken into
more familiar with soil series than other classification units; account, and n is the number of tacit points for soil k; eij

v is
second, the methodology developed in this research can be the value of the vth environmental variable at location (i, j),
more applicable and acceptable in routine soil mapping prac- and ev,t is the value of the vth variable at the tth tacit point
tices; and third, the result from this research will be more for soil k; E is the function for evaluating the similarity on
comparable with the existing soil maps. the vth variable, and this function can be specific for variable

v, tacit point t, and location (i, j); P is the function for evaluat-
ing the similarity at the case level (based on all the environ-Case-Based Reasoning Approach to Acquisition and
mental variables, that is, the configuration of environmentalRepresentation of Knowledge for Soil Mapping
conditions), and can be specific for tacit point t and location

With CBR, the acquisition and representation of knowledge (i, j); and T is the function for deriving the final fuzzy member-
mean creating cases. In this research, the soil scientist creates ship value based on the similarities between site (i, j) and all
cases through a knowledge-acquisition tool called 3dMapper the tacit points for soil k, and can be specific for soil k and
(Burt and Zhu, 2002). The 3dMapper is a software tool that location (i, j).
creates three dimensional (3D) representations of topography There can be various choices for functions T, P, and E in
using digital elevation model (DEM), and allows the user to Eq. [2]. In this research, the maximum operator is used for
drape other data layers, such as air photos, geological types, function T, which is the simplest possible form for T under
and terrain attributes (e.g., slope gradient, aspect, curvatures, the nearest neighbor principle. Among the similarity values
etc.), over the topography, thus brings 3D views of landscapes from all the tacit points for soil k, the maximum operator
to the user. In addition, and more importantly, the 3dMapper selects the highest one as the fuzzy membership value for soil
allows the user to do heads-up digitization on these 3D views; k at the given location. For function P, the minimum operator
that is, the user can draw points, lines, and polygons over the is used. This follows Zhu and Band (1994) and is based on
landscape on the 3D views (Fig. 3). The main purpose of the the limiting factor principle in ecology. The limiting factor
3dMapper is to provide a simulation of the field environment principle assumes that the limiting factor controls the develop-
to a soil scientist, which might help him/her recall his/her tacit ment of soil formation, thus no additional information about
knowledge. Meanwhile, the heads-up digitization function of the relative importance of each factor at a local point is needed.
the 3dMapper provides an easy way for the soil scientist to While the limiting factor method is probably the easiest and
express this knowledge. simplest choice for function P, more research, nevertheless,

A soil scientist can use the 3DMapper to create tacit points is needed to find out the most reasonable way to integrate
(cases). Each tacit point represents a case that contains the the influences of different environmental variables on soil
information from three spaces: geographical space, attribute formation. The choice for function E should be based on the
space, and solution space. In geographical space, a tacit point data type of the environmental variable. For a variable whose
corresponds to a location on the earth’s surface, which can values are categorical, Boolean operators can be used. For
be located by its geographical coordinates. In attribute space, the variables whose values are continuous, the soil scientist
it corresponds to a combination of values of certain environ- can choose from the models discussed by Burrough et al.
mental variables. In solution space, it corresponds to a certain (1992) and MacMillan et al. (2000).
soil or a grade of similarity to the given soil. In this research, The environmental variables used in this research for soil
the soil scientist is asked to give only the most typical cases inference include parent material (from geological data), ele-
for the soils found in the mapping area. In other words, each vation, slope gradient, surface curvatures (profile and plan-
tacit point should represent only one soil, thus reducing the form curvatures) (Zevenbergen and Thorne, 1987), and wet-
subjectivity in case generation. ness index (Beven and Kirkby, 1979). The selection of these

There is no predefined standard on the number of tacit variables was based on the knowledge of the local soil scientist
points for a mapping area. Theoretically, each tacit point and all variables are treated equally. Although attempts have
should represent a unique association between an environ- been made to assign realistic weights to different variables,
mental configuration and a soil. A complete casebase (i.e., the soil scientist working for this project found it difficult to

quantify the importance of each variable in this area.collection of tacit points) for a mapping area should exhaust
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Fig. 3. Procedure of creating tacit points (cases) using 3dMapper.

With the tacit points and the environmental data, the CBR and run the inference engine again. This process is repeated
until the soil scientist is satisfied with the result.inference engine produces a fuzzy membership map for each

soil series found in the study area. The soil scientist can exam-
Validating Methodsine these fuzzy membership maps to see if they match what

he/she expected for the area. If problems are found, the soil In this research, data of 91 field points in the study area
scientist goes back to adjust the tacit points, including moving are used to validate the final soil maps. These field data have

not been used to adjust tacit points. Of these 91 points, allor removing existing tacit points, or adding new tacit points,
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were assigned soil series names by a group of soil scientists Jan. 2004). The data in the National Soil Information System
(NASIS) (Information Technology Center, NRCS, USDA)from NRCS local offices; 59 were given complete profile de-

scriptions; and 44 were given a texture analysis (the percent- are not used because the information in NASIS is incomplete
for the study area at the time of writing. A map of depth toages of sand and silt in A horizon).

One method to check the capability of the CBR approach C horizon based on the CBR results for the study area is
derived using the formula below (Zhu and Band, 1994):in capturing the major pattern of soil distribution is to compare

the fuzzy memberships derived by the inference engine for
the sample points and those given by the soil scientists. Since
the fuzzy membership values given by soil scientists can be Dij �

�
n

k�1
s k

ij dk

�
n

k�1

s k
ij

[3]
very subjective, in this research the soil scientists were asked
to simply name the soil at each sample point as what they
would do in a conventional soil mapping process. These soil

where Dij is the depth value at site (i, j), sij
k is the fuzzy member-series names are referred to as observed names herein. To get

ship value of soil series k at site (i, j), dk is the typical depththe soil series names for the sample points from the CBR
value of soil series k, and n is the total number of soil seriesresult, a “hardening” method is used (Zhu, 1997a), that is, the
prescribed in the soil-landscape model used by the inferencesoil series with the highest fuzzy membership value at a sample
engine. Meanwhile, a depth map based on the published soilpoint is used as the soil series for that sample point. These
survey map is generated by assigning each pixel the typicalnames are referred to as inferred names herein. Meanwhile,
depth value of the soil series as which the pixel is labeled inwe also compared the observed names and the names given
the soil survey map. The two maps are used to compare theby the published soil survey map at the sample points (referred
spatial patterns of depth to C horizon derived from differentto as mapped names herein). We understand that soil maps
sources. Field observations of depth to C horizon are used todisplay map units, which are spatial units but not soil classifica-
compare the accuracies of the above two maps. Respectivetion units. Fortunately, in our study area all the map units are
maps of percentage of sand and silt are created in the samesingle-type units, that is, the soil in one unit belongs to only
way as described above. Laboratory results of percentages ofone soil series. Thus we are able to read soil series from the
sand and silt at the 44 field sites are used to examine thesoil map. One problem in the comparison is that some of the
accuracies of these maps.soil series names used in the soil map are no longer in use

due to the dated nature of the soil map. As a result, we were
only able to use the sites whose soil series names are still in RESULTS AND DISCUSSION
use to do the comparison. There are a total of 57 of these sites.

Of the 57 sites used for conducting the comparison onTesting the capability of the CBR approach in representing
the continuity of soils needs soil properties whose values are soil series name, the inferred names match the observed
continuous. In this study, the depth to C horizon and the names at 49 sites (about 86%), and the published soil
texture of A horizon are used for this purpose. Profile depth survey map matches the observed names at 26 sites
can be an indication of the degree of soil formation and devel- (46%). Among the 57 sites, there are 32 sites for which
opment. However, the depths of C and horizons below can the inference engine and the soil survey map give differ-
be highly variable and the descriptions of these horizons can ent soil series names. Among these 32 sites, the inferredbe highly subjective. Therefore, we choose to use only the

names match the observed names at 25 sites (78%) whiledepth to the top of C horizon. The typical value of the depth
the mapped names match the observed names at onlyto C horizon for each soil series that appears in our study
two sites (6%).area are taken from the Official Soil Descriptions (OSD) (Soil

Figure 4 shows the maps of the depth to C horizonSurvey Division, NRCS, USDA, available online at http://
ortho.ftw.nrcs.usda.gov/cgi-bin/osd/osdname.cgi, verified 19 created based on the CBR result and the soil survey

Fig. 4. (left) Map of depth to C horizon of the Pleasant Valley study area, based on the CBR result. (right) Map of depth to C horizon of the
Pleasant Valley study area, based on the soil survey map.
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map, respectively. While the major spatial patterns dis- absolute error (MAE) and the root mean square error
(RMSE) of the inferred values against the observedplayed by the two maps are similar, the difference is

also apparent. The most obvious difference is that the values are 22.7 and 32.3, respectively, while their coun-
terparts of the mapped values are 27.6 and 42.7, respec-map based on the CBR result (Fig. 4 [left]) shows the

spatial variation in a more continuous way. Also in this tively.
Figures 6 and 7 are maps of A horizon texture. Themap, the change of depth to C horizon from deeper on

the relative flat ridge area to shallower on the steep maps based on the CBR result again have advantages
in providing detailed information about spatial variationback slope to deeper again on the foot slope and toe

slope follows the topography better. This is particularly and representing realistic spatial patterns of the soils in
the study area. In the areas from F4 to F6 and E6, anclear in Area F6. Over this area while the depth based

on the CBR result follows topography well, in the map expected pattern is that the sand percentage is relatively
low on the flat ridge due to the preservation of finerbased on the survey map, relatively high values on the

flat ridge expand and cover the whole back slope. In materials, and relatively high on the back slope due to
the erosion of finer materials, while the silt percentagethe area from C2 to D7, the change of depth from the

narrow ridge to the shoulder slope is clear on the map has a reverse pattern. The maps based on the CBR
result clearly show these patterns, but the map basedbased on the CBR result, but the map based on the

survey map provides very little information on this. An- on the survey map again mixes the ridge area and the
middle slope area. There also should be difference be-other expected pattern, that the depth value is higher

in a convergent area due to material accumulation and tween the texture patterns of convergent areas and those
of divergent areas: In a convergent area, due to thelower in a divergent area due to erosion, is also well

represented in the map based on the CBR result, but accumulation of fine materials, the sand percentage
should be relatively low and the silt percentage shouldis almost not recognized in the map based on the survey

map (e.g., in Areas F4 and F6). be relatively high; In a divergent area, the patterns
should be reversed. The maps based on the CBR resultDepths to C horizon at the 59 field sites were read

from the two maps and are compared with the observed again perform better than the maps based on the survey
result in representing this pattern (e.g., the area fromdepth values. Scatter plots are created to illustrate how

well the inferred values and the mapped values match E3 to F3). Statistics are calculated for the 44 sample
points whose actual texture values are available (Table 1).the observed values (Fig. 5). Figure 5 (left), which is

the scatter plot for the inferred values, clearly shows the When tracing the sources of the errors in the CBR
results, besides the subjectivity of the soil scientists, wetendency of the inferred values to follow the observed

values. In Fig. 5 (right), which is the scatter plot for the took into account two important factors. First, at this
time the inference engine can only compute the similar-mapped values, the tendency is very weak. The mean

Fig. 5. (a) Scatter plot of observed depths to C horizon vs. the depth to C horizon derived from the case-based reasoning result at 59 sample
locations in the Pleasant Valley study area. (b) Scatter plot of observed depth to C horizon vs. the depth to C horizon derived from the soil
survey map at 59 sample locations in the Pleasant Valley study area.
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Fig. 6. (left) Sand percentage in A horizon derived from the case-based reasoning result. (right) Sand percentage in A horizon derived from the
soil survey map.

ity between a given location and a tacit point in the C horizon, and on the texture of A horizon consistently
attribute space. No similarity in the geographic space, show that the inference result from the CBR process is
that is, spatial similarity (Holt and Benwell, 1999), has more accurate than the published soil survey map. This
been considered. The lack of spatial consideration may case study demonstrates that CBR can be an effective
lead to incomplete characterization of the tacit points approach to knowledge acquisition, knowledge repre-
(cases), which consequently, may cause error in the in- sentation, and soil inference for soil mapping under
ference. Second, some of soil scientists’ knowledge has fuzzy logic. Apparently, the CBR method inherits some
not been well utilized in the current inference process. advantages from previous computerized knowledge-
Particularly, some critical information used by soil scien- based fuzzy mapping methods: A computerized map-
tists in modeling the soil–environment relationship, such ping process has a much higher efficiency than that
as the information about catena, the information about of a manual process; The computerized approach can
slope positions, and the information about some special maintain a high consistency during the whole mapping
terrain features, is still not available under current spa- process; Soil scientists’ knowledge can be stored and
tial analysis techniques. These problems indicate poten- accumulated in a computerized knowledgebase; thetial research directions.

fuzzy representation scheme can represent and present
accurate and precise information. Meanwhile, this re-

CONCLUSIONS search reveals some unique advantages of the CBR
method. When a friendly and appropriate interface (likeIn the case study in the Pleasant Valley area, the

comparisons on the soil series names, on the depth to 3dMapper) is provided, the CBR approach allows soil

Fig. 7. (left) Silt percentage in A horizon derived from the case-based reasoning result. (right) Silt percentage in A horizon derived from the
soil survey map.



R
ep

ro
du

ce
d 

fr
om

 S
oi

l S
ci

en
ce

 S
oc

ie
ty

 o
f A

m
er

ic
a 

Jo
ur

na
l. 

P
ub

lis
he

d 
by

 S
oi

l S
ci

en
ce

 S
oc

ie
ty

 o
f A

m
er

ic
a.

 A
ll 

co
py

rig
ht

s 
re

se
rv

ed
.

SHI ET AL.: A CASE-BASED REASONING APPROACH TO FUZZY SOIL MAPPING 893

Table 1. Accuracy of the derived texture of A horizon in the REFERENCES
Pleasant Valley study area: The case-based reasoning (CBR)

Aamodt, A., and E. Plaza. 1994. Case-based reasoning: Foundationalresult vs. the soil survey map. Mean average error (MAE) and
issues, methodological variations, and system approaches. AI Com-root mean square error (RMSE) are calculated using derived
munications 7:39–52.values (based on the CBR result and the soil survey map,

Beven, K.J., and M.J. Kirkby. 1979. A physically-based, variable con-respectively) as estimates and using the lab analysis result as
tributing area model of basin hydrology. Hydrol. Sci. Bull. 24:43–69.true values.†

Bie, W.W., and P.H.T. Beckett. 1973. Comparison of four independent
Percentage of sand Percentage of silt soil surveys by air photo interpretation, Paphos area (Cyprus).

Photogrammetria 29:189–202.MAE RMSE MAE RMSE
Burt, J.E., and A.X. Zhu. 2002. 3dMapper 2.11. Dep. of Geography,

Inference result 14.6 20.3 18.6 23.6 Univ. of Wisconsin-Madison, Madison.
Soil survey map 17.3 24.9 20.2 25.9 Burrough, P.A. 1989. Fuzzy mathematical methods for soil survey

and land evaluation. J. Soil Sci. 40:477–492.† Number of samples: 44.
Burrough, P.A., R.A. MacMillan, and W. van Deursen. 1992. Fuzzy

classification methods for determining land suitability from soil
profile observations and topography. J. Soil Sci. 43:193–210.scientists easily to express their tacit knowledge by pin-

Burrough, P.A., P.F.M. Van Gaans, and R. Hootsmans. 1997. Continu-pointing specific locations in geographic space, without
ous classification in soil survey: Spatial correlation, confusion and

having to make efforts to generalize the knowledge into boundaries. Geoderma 77:115–135.
rules in attribute space. Pinpointing tacit points can be Clayton, L., and J.W. Attig. 1997. Pleistocene geology of Dane County,

Wisconsin. Wisconsin Geological and Natural History Surv. Bull.easier than providing general rules, because the tacit
95. Wisconsin Geological and Natural History Survey, Madison, WI.knowledge, which is learned by investigating soils at

Cook, S.E., R.J. Corner, G. Grealish, P.E. Gessler, and C.J. Chartres.
specific locations during fieldwork, is likely to be in the 1996. A rule-based system to map soil properties. Soil Sci. Soc.
form of cases in a soil scientist’s mind; also, pinpointing Am. J. 60:1893–1900.

De Bruin, S., and A. Stein. 1998. Soil-landscape modelling using fuzzytacit points allows the soil scientist to avoid depicting
c-means clustering of attribute data derived from a digital elevationthe details of the soil–environmental relationship in at-
model (DEM). Geoderma 83:17–33.

tribute space and assuming the “variable independence.” Galbraith, J.M., and R.B. Bryant. 1998. A functional analysis of soil
This feature, combining with the similarity-based infer- taxonomy in relation to expert system techniques. Soil Sci. 163:

739–747.ence strategy, allows soil scientists easily to adjust the
Galbraith, J.M., R.B. Bryant, and R.J. Ahrens. 1998. An expert systemrepresentation of their knowledge and control the infer-

for soil taxonomy. Soil Sci. 163:748–758.
ence results. The soil scientist can easily find out which Gore, P.J.W. 1998. Mass Wasting. Available at http://www.gpc.
tacit point is controlling which part of the area and can peachnet.edu/�pgore/geology/geo101/masswasting.html (accessed

15 Oct. 2002; verified 19 Jan. 2004).easily adjust the tacit point to modify the inference
Hole, F.D., and J.B. Campbell. 1985. Soil landscape analysis. Row-result. Finally, the tacit points are technically indepen- man & Allanheld, Totowa, NJ.

dent from each other in the inference process, thus add- Holt, A., and G.L. Benwell. 1999. Applying case-based reasoning
ing and removing any tacit points would not impact techniques in GIS. Int. J. Geographical Information Sci. 13:9–25.

Hudson, B.D. 1992. The soil survey as paradigm-based science. Soilthe other tacit points and the inference setting (i.e., no
Sci. Soc. Am. J. 56:836–841.retraining is needed). This makes knowledge accumula- Information Technology Center, NRCS, and USDA. 2001. National

tion and update easy. Soil Information System (NASIS) [Online]. Available at http://
nasis.nrcs.usda.gov (accessed 5 July 2001; verified 19 Jan. 2004).Although this research focuses on soil scientists’ spe-
USDA-NRCS, Washington, DC.cific knowledge (i.e., knowledge of the association be-

Irvin, B.J., S.J. Ventura, and B.K. Slater. 1997. Fuzzy and isodatatween a certain soil and a specific landscape), it has classification of landform elements from digital terrain data in
been found that the knowledge that can be provided Pleasant Valley, Wisconsin. Geoderma 77:137–154.

Jenny, H. 1941. Factors of soil formation: A system of quantitativeby soil scientists is not always of one single type. The
pedology. McGraw-Hill, New York.knowledge can exist in both specific (as cases) and gen-

Jenny, H. 1980. The soil resource: Origin and behavior. Springer-eral (as rules) forms. Proper utilization of general Verlag, New York.
knowledge can improve the efficiency of knowledge Knox, J.C., D.S. Leigh, and T.A. Frolking. 1990. Roundtree formation

(new). p. 64–67. In L. Clayton and J.W. Attig (ed.) Geology ofacquisition and soil inference. Therefore, to fully extract
Sauk County, Wisconsin. Wisconsin Geol. and Natural Historyand utilize soil scientists’ knowledge and to improve the
Surv., Madison, WI.performance of the soil inference, research is needed Kolodner, J. 1993. Case-based reasoning. Morgan Kaufmann Publ.,

to develop a more versatile system that contains knowl- San Mateo, CA.
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